University of Exeter

1

4

Natural environments and physical activity: Epidemiology, experimentation, infrastructure, and intervention

Lewis Elliott (L.R.Elliott@exeter.ac.uk) FUSE Physical Activity Workshop 2023

Overview

- Cross-sectional evidence of nature physical activity associations
- Green exercise
- Greenspace creation/improvement interventions and greenspace promotion interventions
- Economic evaluations

University of Exeter

Cross-sectional evidence

Cross-sectional evidence

- •Coombes et al., (2010)
- Participants: 6,821 adults from Bristol
- Exposure: Distance to different types of greenspace at least 2ha in size
- Outcomes: visiting greenspace at least once per week, self-reporting PA guidelines (≥5 days of MVPA a week)

mbes, E., Jones, A. P., & Hillsdon, M. (2010). The relationship of physical activity and overweight ace accessibility and use. Social Science & Medicine, 70(6), 816–822. <u>https://doi.org/10.1016/j.socs</u>/ 10.1016/j.socs/

Definitions

- •Greenspace / nature / natural environment
- I will use these interchangeably!
- Typically, the research herein refers to managed biotic greenspace (parks), and abiotic aquatic environments (beaches / coast / rivers)
- I will refer both to *indirect* exposure (access/availability of greenspace) and *intentional* exposure (leisure visits)

Distance measure	Visiting green space at least once a week		Achieving physical activity guidelines ^a	
	OR	95% CI	OR	95% CI
All green spaces				
Quartile 1 (nearest <100 m)	1.00	-	1.00	-
Quartile 2	0.87	(0.68, 0.02)	1.01	(0.82-1.0
Quartile 4 (furthert > 500 m)	0.75	(0.68-0.92)	0.05 15	(0.87-1.1
Quartie 4 (intriest >500 m)	0.04	(0.33-0.73)	0.55	(0.01-1.1
Formal green spaces	1.00		1.00	
Quartile 7 (nearest < 850 m)	0.72	- (0.62-0.85)	0.97	(0.76-1.0
Quartile 3	0.73	(0.63-0.85)	0.72	(0.62-0.8
Quartile 4 (furthest >2250 m)	0.64**	(0.55-0.75)	0.76**	(0.65-0.8
Informal green spaces				
Quartile 1 (nearest <200 m)	1.00	-	1.00	-
Quartile 2	0.80	(0.69 - 0.93)	0.96	(0.82 - 1.1)
Quartile 3	0.70	(0.60-0.82)	0.97	(0.83-1.1
Quartile 4 (furthest >680 m)	0.80**	(0.68 - 0.93)	0.98 ns	(0.84-1.1
Natural green spaces				
Quartile 1 (nearest <250 m)	1.00	-	1.00	-
Quartile 2	1.03	(0.88 - 1.20)	1.04	(0.89-1.2
Quartile 3	0.85	(0.73-0.99)	1.04	(0.89-1.2
Quartile 4 (furthest >800 m)	0.80	(0.68-0.94)	1.05	(0.91-1.2
Young People's green spaces	1.00		1.00	
Quartile 2	1.00	(0.92-1.30)	1.00	(0.92-1.7
Quartile 3	0.98	(0.84-1.14)	0.91	(0.79-1.0
Quartile 4 (furthest >2800 m)	0.95 ^{ns}	(0.81-1.11)	0.91 ^{ns}	(0.78-1.0
Sports green spaces				
Ouartile 1 (nearest <640 m)	1.00	-	1.00	-
Quartile 2	0.94	(0.81 - 1.10)	1.09	(0.94-1.3
Quartile 3	0.89	(0.77-1.04)	1.05	(0.91-1.
Ouartile 4 (furthest >1470 m)	0.87"	(0.74 - 1.02)	1.10 ^{mi}	(0.95-1

Cross-sectional evidence

•White et al., (2018)

- Participants: 280,790 participants from MENE
- Exposure: LSOA-level greenspace (exc. gardens)
- Outcome: ≥5 days of 30 minutes of moderate-to-vigorous physical activity through leisure or transport
- Moderators: Dog ownership (yes/no)
 White, M. P., Elliott, L. R., Wheeler, B. W., & Fleming, L. E. (2016). Neighbourhood greenspace is related to
 physical activity in England, but only for dog owners. Landscape and Urban Planning, 174, 18-23.

7

11

University of Exeter

Cross-sectional evidence

•White et al., (2014)

- Participants: 183,755 participants in MENE
- Exposure: Residential proximity to the coastline
- Outcomes: Self-reported achieving physical activity guidelines (≥5 days of MVPA in leisure time or transport in last week)

White, M. P., Wheeler, B. W., Herbert, S., Alcock, I., & Depledge, M. H. (2014). Coastal proximity and physical activity: Is the coast an under-appreciated public health resource? *Preventive Medicine*, 69, 135–140. https://doi.org/10.1016/j.ymed.2014.08.0115

Cross-sectional evidence

•Pasanen et al., (2019)

- Participants: 21,097 adults from the Health Survey for England
- Exposures: Residential proximity to the coastline (among others)
- Outcomes: General health (5-point scale) and mental health (GHQ-12)
- Mediators: MET-hours per week engaged in at least moderate-intensity watersports, on-land physical activity, and indoor physical activity

Pasanen, T. P., White, M. P., Wheeler, B. W., Garrett, J. K., & Elliott, L. R. (2019). Neighbourhood blue space, health and wellt The mediating role of different types of physical activity. Environment International. 131, 105016.

13

Cross-sectional evidence

•Elliott et al., (2015)

• Participants: 71,603 adults from MENE.

• Exposure: Type of natural environment visited.

• Outcome: Volume of physical activity achieved on visit (MET minutes)

Elliott, L. R., White, M. P., Taylor, A. H., & Herbert, S. (2015). Energy expenditure on recreational visits to different natural environments. Social Science & Medicine, 139, 53–60. https://doi.org/10.1016/i.accesimed.2015.06.038

14

Cross-sectional evidence

•Flowers et al., (2016)

- Participants: 2,079 British adults
- Exposure: Self-reported *frequency of visits* to greenspace
- Outcomes: Whether the participant selfreported achieving 600 MET minutes of physical activity per week

Flowers, E. P., Freeman, P., & Gladwell, V. F. (2016). A cross-sectional study examining predictors of visit frequency to local green space and the impact this has on physical activity levels. *BMC Public Health*, 14(1) <u>https://doi.org/10.1166/s1280-916-3060-91</u>

Cross-sectional evidence summary

• Closer proximity to greenspace is associated with physical activity attainment. • ...but this is limited to certain types of greenspace

• Greater availability of greenspace in associated with physical activity attainment. • ...but only if you own a dog

• Closer proximity to the coast is associated with physical activity attainment. • ...but only in western regions of the country.

• ...and it might be simply the result of greater volumes of walking.

• Visits to green/bluespace associated with higher physical activity attainment and energy expenditure. • ...but the type of space and how far you travel are important

...which leads to the elephant in the room

19

University of Exeter

Green exercise

20

Green exercise • Wicks et al. (2022) Most studies: Involved single bouts of PA 15-60 minutes Western countries University students • Aged 19-50 • Walking Wicks, C., Barton, J., Orbell, S., & Andrews, L. (2022). Psychological benefits of outdoor physical activity in natural versus urban environments: A systematic review and meta-analysis of experimental studies. Applied Psychology: Health and Well-Being, n/a(n/a). https://doi.org/10.1111/aphw.12353

Green exercise

Outcome	No. of participants (studies)	Statistical method	Effect estimate [95% CI]	I ²	χ ² (df)	
Anxiety	720 (7)	Std. mean difference (IV, random, 95% CI)	-6.59 [-10.04, -3.13]*	91%	$66.98 (df = 6)^{4}$	
Depression	697 (5)	Mean difference (IV, random, 95% CI)	-0.34 [-0.62, -0.05]*	74%	$15.12 (df = 4)^{6}$	
Anger/ hostility	697 (5)	Mean difference (IV, random, 95% CI)	-0.57 [-0.79, -0.35]*	30%	5.71 (df = 4)	
Fatigue	697 (5)	Mean difference (IV, random, 95% CI)	-1.98 [-2.77, -1.19]*	79%	19.18 $(df = 4)^{6}$	
Vigour	697 (5)	Mean difference (IV, random, 95% CI)	3.28 [2.84, 3.71]*	15%	4.73 (<i>df</i> = 4)	
Positive affect	115 (2)	Std. mean difference (continuous, random, 95% CI)	0.59 [0.21, 0.98]*	92%	$12.43 (df = 1)^{6}$	

Wicks, C., Barton, J., Orbell, S., & Andrews, L. (2022). Psychological benefits of outdoor physical activity in natural versus urban environments: A systematic review and meta-analysis of experimental studies. Applied Psychology: Health and Weil-Being, nk(nk), https://doi.org/10.1111/aphw.12353

23

22

Green exercise

• Wicks et al. (2022)

- Participants: 1,800 individuals from 24 experimental studies (review and metaanalysis)
- Exposure: Whether the physical activity took place in an urban environment or a natural environment
- Outcome: Any permitted psychological outcome

Wicks, C., Barton, J., Orbell, S., & Andrews, L. (2022). Psychological benefits of outdoor physical activity in natural versus urban environments: A systematic review and meta-analysis of experimental studies. *Applied Psychology: Health and Welf-Beng, né(via), IteryJoid.org/10.1111/journ.1235*.

21

University of Exeter

Green exercise

• Wicks et al. (2022)

- Duration important:
 15 minute bouts had a stronger effect size between green and urban environments than longer bouts
 Likely to do with the immediate environmental effects vs. the cumulative effects of the activity on mental health outcomes.
- Social context important: Walks with friends, in groups, or with the researcher appeared to result in stronger differences between g and urban environments.

Wicks, C., Barton, J., Orbell, S., & Andrews, L. (2022). Psychological benefits of outdoor physical activity in natural versus urban environments: A systematic review and meta-analysis of experimental studies. Applied Psychology: Health and Welf-Bengin, Rafv(a), <u>https://doi.org/10.1111/jabu.12535</u>

Green exercise

- Participants: 38 non-stressed adults.
- Exposure: Self-paced 30 minute walks in three environments: urban, green, and blue (crossover design)
- Outcomes: Mood, cognitive function, restorative experience, salivary cortisol, and heart rate variability

Gidlow, C. J., Jones, M. V., Hurst, G., Masterson, D., Clark-Carter, D., Tarvainen, M. P., Smith, G., & Nieuwenhuijsen, M. (2016). Where to put your best toot forward: Psycho-physiological responses to waiking in natural and urban environments. *Journal of Environmental Psychology*, 45, 22–28. https://doi.org/10.1016/j.jemp.2017.10.033

25

Green exercise

• Gidlow et al., (2016)

- Backwards digit span scores significantly better following blue/green walks compared to urban, but **no difference** between green and blue environments.
- Mood (short POMS) improved equally in all three environments.
- Cortisol fell equally in all three environments.
- HRV measures were inconclusive.

Gidtow, C. J., Jones, M. V., Hurst, G., Masterson, D., Clark-Carter, D., Tansinen, M. P., Smith, G., & Neuwenhuijsen, M. (2016). Where to put your best foot forward: Psycho-physiological responses to walking natural and urban environments. *Journal of Environmental Psychology*, 46, 22–29. <u>https://doi.org/10.1016/j.jemp.2017.11.03</u>

26

Greenspace interventions

Greenspace interventions

•Hunter et al., (2015)

• Participants: Samples from 12 studies.

Exposure:

 Physical change to a green space
 Intervention to promote use of green space (e.g. awareness campaign)
 Combination of these

• Had to have a control group.

• Outcome: Changes in levels of physical activity (observed, self-reported etc.).

Hunter, R. F., Christian, H., Veitch, J., Astell-Burt, T., Hipp, J. A., & Schipperijn, J. (2015). The impact of interventions to promote physical activity in urban green space: A systematic review and recommendations f future research. Social Science & Medicine, 124. 246–256. https://doi.org/10.1016/j.accanimed.2014.11.051

Green exercise evidence summary

• **Consistent** evidence that being active in more natural surroundings confers positive psychological effects when compared to urban (and indoor) environments

- ...but these are typically limited to "mood" measures which are widely criticised by exercise psychologists
- ...these findings rarely extend to physiological indices (which may or may not be a problem)
- ...any effects across different types of natural environments are likely 'washed out' by the impact of physical activity on psychological indices

27

Greenspace interventions

•Hunter et al., (2015)

- 9 studies included only physical changes to the natural environment
- 4 showed increases in PA levels, 5 did not
- Some null findings were explained e.g. by cuts in funding during the intervention.

Hunter, R. F., Christian, H., Veitch, J., Astell-Burt, T., Hipp, J. A., & Schlipperijn, J. (2015). The impact of interventions to promote physical activity in urban green space: A systematic review and recommendations in future research. Social Science & Medicine, 124, 246–256. <u>https://doi.org/10.1016/j.socscimed.2014.11.051</u>

Greenspace interventions

• Hunter et al., (2015)

- 3 studies included promotional elements (1 solely, 2 mixed).
- Promotion-only intervention involved signage, promotional incentives, and outreach activities.
- Other two involved cycling trail creation and playing field renovations coupled with advertisement campaigns, launch events, and skills development amongst park staff.

• All 3 showed positive effects on PA (varied outcomes).

Hunter, R. F., Christian, H., Veitch, J., Astell-Burt, T., Hipp, J. A., & Schipperijn, J. (2015). The impact of interventions to promote physical activity in urban green space: A systematic review and recommendations for future research. Social Science & Medicine, 72: 4246–526. https://doi.org/10.1016/j.acsciented.2014.11.051

31

32

Greenspace interventions

- •Hunter et al., (2015)
- Findings were confirmed in a future review (Hunter et al., 2019).
- It is *near impossible* to conduct randomised controlled trials of the effects of greenspace improvement on PA.
- It is difficult to know if you are encouraging new visitors to be more active, displacing alreadyactive visitors, or increasing the activity of already-active visitors (and thus, potentially widening inequalities).
- Hunter, R. F., Cleland, C., Cleary, A., Droomers, M., Wheeler, B. W., Sinnett, D., Nieuwenhuijsen, M. J., & Braubach, M. (2019). Environmental, health, wellbeing, social and equity effects of urban green space interventions: A meta-narrative evidence synthesis. Environment International, 130, 104923.

Greenspace interventions

•Elliott et al., (2016)

• Convenience sample of Devon walking leaflets

• Developed coding scheme based on theoreticallyinformed techniques which have been used to promote PA behaviour change – 5 superordinate categories; 87 subordinate categories.

• 5,099 instances of coded text

• 33/87 potential categories of persuasive message were present in >3 brochures Elliot. L. R. White. M. P., Taylor. A. H. & Abraham. C. (2016). How do bootures encourage walking in natural environments in the UK3 A context analysis. *Health Promotion International*, 33(2), 299–310.

38

Greenspace interventions evidence summary

Observing effects of greenspace interventions on physical activity is difficult.
Randomised controlled design are rarely possible.
It is often difficult to attribute effects to the intervention.

• The effects may take a very long time to appear (more than your constrained study time).

• Solutions:

- Clever use of very good administrative/commercial data longitudinally.
 Greater funding for longer/stronger research designs.
- Carefully designed promotional efforts may be key. ...but getting people to engage with promotional efforts is another matter.

• Connswater community greenway: <u>https://youtu.be/BzuUPerwmAc</u>

39

...and finally

Economic evaluation

A News Sport Weather IPlayer TV R

BBC O Sign in

Science & Environn

By Mark Kinver Emutanment reporter, BBC News

Self-reported exercise a week	Active visits last week	Number of individuals		QALY value	QALYs (per year)		Annual welfare gain in £s (1 QALY = £20,000)	
		N	(Std error)	Per person	N*	(Std error)	N*	(Std error)
≿5 × 30 min	1	939,833	(11,490)	0.010677	10,034	(123)	200,617,033	(2,431,401)
	2	450,500	(18,019)	0.021354	9619	(385)	192,399,540	(7,695,937)
	3	251,000	(9288)	0.032303	8108	(300)	162,161,060	(6,000,595)
	4	175,833	(8308)	0.042707	7509	(355)	150,186,283	(7,096,447)
	5	1,007,333	(44,625)	0.053384	53,775	(2382)	1,075,509,653	(47,645,863
<5 × 30 min	5	376,833	(25,424)	0.053384	20,116	(1357)	402,337,413	(27,145,704

• White et al., (2016)

- Average annual health cost savings resulting from visits to nature which incurred at least 30 minutes of moderate-intensity physical activity equates to £2.2bn.
 £314m from just water sports (Papathanasopoulou et al., 2016).

Green spaces worth £2.2bn to public health in England

White, M. P., Elliott, L. R., Tayfor, T., Wheeler, B. W., Spencer, A., Bone, A., Depledge, M. H., & Fleming, L. E. (2016). Recreational physical activity in natural environments and implications for health: A population based cross-sectional study in England. *Preventive Medicine*, 91, 383–388. <u>https://doi.org/10.1016/i.gomed.2016.08.023;</u> Papathanasopoulou, E., White, M. P., Hattam, C., Lannin, A., Harvey, A., & Spencer, A. (2016). Valuing the health benefits of physical activities in the marine environment and their importance for marine spatial planning. *Marine Policy*, 63, 144–152. https://doi.org/10.1016/i.gom.org/10.1016.10.0016

43

Summary

- Greater availability of, accessibility of, and contact with greenspace is associated with higher physical activity attainment.
 But under certain circumstances for certain people.
- Being active in greener areas confers additive psychological benefits when compared with urban areas.
 But beware measurement issues.
- Improving greenspace can increase physical activity levels.
 But we are unsure who for and promotion officiate activity levels.
- But we are unsure who for, and promotion efforts are key (and beware boomerang effects / gentrification).
- Greenspaces are a public health resource for physical activity which could lead to substantial health cost savings.

44

University of Exeter

Nature, health, and well-being CPD course

Dates: 20th, 23rd, 27th & 30th March 2023 Delivery: Virtual via Zoom Course Leads: Dr Lewis Elliott with experts from the University of Exeter Who is it for: This interdisciplinary course is for those

Who is it for: This interdisciplinary course is for those working in medicine, the environment, public health & sustainability To Book: https://medicine.exeter.ac.uk/cpd/naturehealth/

Stuff I couldn't even cover!

• Some evidence that the associations between greenspace availability and physical activity are stronger for people living on lower household incomes (Garrett et al., 2020).

- Implications for inequalities.
- ...but effects did not extend to accelerometermeasured physical activity.
- Mixed / early evidence for the benefit of nature-
- based physical activity programmes for therapeutic gain (e.g. Britton et al., 2018)
- Research design / funding issues.
- ...watch this space.

Garrett, J. K., White, M. P., Elliott, L. R., Wheeler, B. W., & Fleming, L. E. (2020). Urban nature and physical activity. Investigating associations using self-reported and accelerometer data and the role of household income. *Environmental Research*, 190, 10989 Intrustriki conf. 2016; Jannes, 2020, 10989; Britton, E., Klordmann, G. D., Omengan, C., A. Carlin, C. (2018). Blue care A systematic review of blue space interventions for health and wellbeing. *Health Promotion International*, 20. https://doi.org/10.10939/hearonful-art013.

